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Fault-Detection Design for Uninhabited Aerial Vehicles
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Fault Detection (FD) plays a vital role in ensuring the safety of a flight-control system, especially that of an
uninhabited aerial vehicle. An FD algorithm is designed to detect a situation in which a faulty condition has
occurred in the system. The main theoretical contribution of this work is a new residual threshold function, which
is input dependent and enhances the FD capabilities of highly uncertain systems. The combined FD algorithm
and new threshold function were simulated in the laboratory, in a high-fidelity hardware-in-the-loop environment,
and flight tested as part of the Defense Advanced Research Projects Agency (DARPA) Software Enabled Control
(SEC) Program. The DARPA SEC program is a research initiative designed to provide flight-control engineers
with a reusable interface for the implementation of flight-control algorithms and flight management software on
embedded systems.

Nomenclature
d = norm bounded model uncertainty excitation signal
E = residual energy
F = fault-detection filter
f = norm bounded fault model excitation signal
f̀ = fault model output signal
Gm = identified linear time-invariant plant model
g = threshold function
K p = model uncertainty tuning gain
n = norm bounded model uncertainty excitation signal
r = fault detection filter residual
ř = threshold function residual
r̃ = residual error
S = running norm operator with a forgetting factor
T = projection operator
Trw = transfer matrix for H∞ optimization
Ts = sampling rate of the fault detection algorithm
t = time variable/simulation time, s
u = heading rate command
u = command vector of the true plant, or the nonlinear

plant model
ù = corrupted (faulty) heading rate command
W = weighting function
w = extended input for H∞ optimization
y = heading rate output of the linear time-invariant

plant model
y = measurement vector of the true plant, or the nonlinear

plant model
yχ = heading output of the true plant, or the nonlinear

plant model
yχ̇ = differentiated heading output of the true plant, or the

nonlinear plant model

Presented as Paper 2005-6251 at the AIAA Guidance, Navigation and
Control Conference, San Francisco, CA, 15–18 August 2005; received
30 July 2005; revision received 10 December 2005; accepted for publication
12 December 2005. Copyright c© 2006 by the authors. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condi-
tion that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0731-5090/06 $10.00 in correspondence with the CCC.

∗Visiting Professor; on sabbatical from Rafael and Technion, Department
of Electrical Engineering, Haifa, 32000, Israel; hector@ee.technion.ac.il.

†Graduate Student, Department of Aerospace Engineering and Me-
chanics; currently Research Engineer, Honeywell International, Navigation
Communication and Control, Minneapolis, MN, 55418; ryan.ingvalson@
honeywell.com. Member AIAA.

‡Postdoctoral Associate, Department of Aerospace Engineering and Me-
chanics, 100 Union Street, SE; keviczky@aem.umn.edu.

§Professor, Department of Aerospace Engineering and Mechanics, 100
Union Street, SE; balas@aem.umn.edu. Associate Fellow AIAA.

ỳ = faulty heading rate output
ŷ = heading rate output of the robust plant model
ỹ = model error
z = discrete-time transfer function variable
β̂ = threshold function noise tuning parameter
� = perturbation matrix
�t = input time delay of nonlinear plant model
κ = threshold function forgetting factor

Subscripts

f = fault model association
m = plant model association
n = noise model association

I. Introduction

T HE Software Enabled Control (SEC) program1 was a re-
search initiative undertaken by the Defense Advanced Re-

search Projects Agency (DARPA) to leverage recent developments
in software and computing technologies for applications to control
systems. The application domain for the technology is uninhab-
ited aerial vehicles (UAV). The program culminated in Edwards,
California, at NASA’s Dryden Flight Research Center (DFRC)
with a flight test of the Boeing T-33/UCAV flight test bed, which
simulated a fixed-wing UAV. University of Minnesota (UMN) re-
searchers, in collaboration with researchers from the University of
California at Berkeley (UCB), implemented and flight tested a reced-
ing horizon control (RHC) and a fault-detection (FD) algorithm that
made use of an adaptive customizable program interface. This inter-
face is the open control platform (OCP).2 It provided the software
infrastructure to the T-33/UCAV for implementation of real-time
adaptive control algorithms.

The T-33/UCAV aircraft was chosen because its avionics plat-
form could be fitted with the same package as the X-45 uninhabited
combat aerial vehicle (UCAV). Both aircraft are pictured in Fig. 1.
This provided the SEC program with a single aircraft characterized
by realistic UAV dynamics as well as being fitted with an avionics
interface of a true UAV.

To understand the challenge involved in designing a FD filter
for the SEC fixed-wing program, consider the block diagram of
the plant as shown in Fig. 2. The usual assumption in FD design
is that the control signals (i.e., the signals sent to the actuators)
and the measurements of the dynamic response are all available
to the FD algorithm. In this way, the FD design can be carried
out on an open-loop system, that is, independent from having to
consider the feedback from the stability augmentation and autopilot
systems.

From an FD perspective, the advantage of using open-loop sig-
nals is clear. One of the very fundamental roles of a feedback loop is
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a)

b)

Fig. 1 Images of the two aircrafts of interest for the SEC fixed-wing
flight demonstration: a) the T-33 Jet Aircraft and b) the X-45 UCAV.
(The T-33 photo in this figure was obtained from a online photo database.
The UCAV photo was obtained from the Boeing Company’s corporate
web site: www.boeing.com.)

Fig. 2 Plant setup for the SEC fixed-wing experiment. Notice that only
the vectors u and y are available for processing.

to desensitize the system to plant variations and uncertainty; hence,
faults can be masked by the closed-loop control action of such sys-
tems. One could also claim that faults effectively masked by the
control system are less important than those that reflect themselves
in the closed-loop behavior. In such a situation, FD is still important
because it directly affects safety, risk, and mission success assess-
ments, but FD also becomes more difficult. Constraints such as these
were similar to those imposed by the SEC program, yet our results
show that a certain level of FD can still be achieved. This should not
be understood as an argument in favor of using input-output or ex-
ternal signals even if the internal signals are available, because one
of the conclusions of this project is that FD is indeed challenging
without internal signals.

As alluded to in the preceding paragraph, the plant model avail-
able for the design of both the control and FD algorithms did not
provide access to its internal, closed-loop signals. The plant model
provided to SEC researchers was DEMOSIM. (This simulation was

provided by the Boeing Company as part of the SEC program.) It
is a nonlinear simulation of the T-33 dynamics, including models
of the UCAV avionics, an autopilot, and a stability augmentation
system. In other words, DEMOSIM is a black-box model with only
the input vector u and measurement vector y available.

Almost every approach to FD assumes that either a valid, though
possibly inexact, model of the internal dynamics of the plant of
interest exists or that learning a model from data is possible (see
the comprehensive books of Chen and Patton3 and Gertler4). For
the SEC program, a model was available, but the internal dynamic
models were not. Because of this, the effect of a fault could not
be internal introduced into DEMOSIM. The challenge was to de-
velop an FD system that could be designed and tested, in hardware-
in-the-loop (HIL) and flight test, given a limited set of informa-
tion and actuation. This challenge was addressed with a number
of tools, such as H∞ fault detection, fault model estimation us-
ing a full nonlinear aircraft simulation, and system-identification
techniques.

Given these limitations, an FD algorithm was developed for the
T-33/UCAV flight test bed. The strategy employed for addressing
the closed-loop FD problem is based primarily on the foundations
of robust control theory, specifically that ofH∞ optimization. It was
also necessary to synthesize an input-dependent threshold function,
for which a novel approach was developed using ideas found in the
model invalidation literature. The FD algorithm with the threshold
function was a primary component of the OCP. Once integrated
into the OCP, the algorithm was tested in an offline simulation,
a HIL simulation, and flight tested as part of the SEC fixed-wing
capstone demonstration. This paper focuses on the development
and testing FD algorithm and threshold detection filter for the SEC
program.

The outline of the paper is as follows. A brief background to
FD is presented in Sec. II. Section III provides a detailed intro-
duction to the SEC FD problem as well as a description of the
setup and design of the FD filter. Section IV contains the theoretical
contribution of the paper: the development of the input-dependent
threshold function. This section also contains a discussion of a num-
ber of tuning parameters that were introduced in order to compen-
sate for the conservative nature of the threshold function’s decision
criterion. Section V contains further modeling details and shows
the considerations involved in designing the FD filter and in tuning
the threshold function. This section presents performance results
of the FD algorithm in an offline simulation. An overview of the
full SEC fixed-wing capstone demonstration scenario is given in
Sec. VI. The SEC capstone demonstration was the experiment plan
for an offline simulation and was also the flight plan for both the
HIL test performed at the Boeing Company and for the flight test
flown at NASA DFRC in June of 2004. The results of these two
tests are given in Secs.VII and VIII, respectively. Lastly, Sec. IX
contains conclusions and a summary of results.

II. Fault Detection
Fault detection is understood as the ability to recognize unex-

pected changes in the response of a system, usually resulting from
physical failures or breakdowns. Research efforts in FD started dur-
ing the early 1970s, and a relatively large body of knowledge is now
available. For a review of many results found in the literature, the
reader is again referred to Chen and Patton3 and Gertler.4

Arguably the most straightforward method of dealing with faults
is to use redundant subsystems. For instance, a typical commer-
cial aircraft’s navigation sensing suite can contain triple-redundant
inertial references plus double-redundant air data sensors. A vot-
ing scheme can be implemented to check the performance of the
individual sensors and detect abnormal behavior.

Hardware redundancy is expensive and usually limited to high-
end applications. This stimulates the drive to replace hardware re-
dundancy by “analytic” redundancy whereby additional knowledge
of the system is leveraged instead of actual redundancy. Earlier work
in FD application and design, such as that by Massoumnia,5 con-
centrated on the conditions for detecting and identifying faults for
highly idealized models. The focus of this work was on the tradeoff
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between the ability to detect faults and the level of noise in the mea-
surements. Recently, paralleling the developments in control theory,
the effect of model uncertainty has been recognized as a major fac-
tor affecting fault detection. This has given rise to the idea of robust
fault detection, namely, the ability to detect faults in the presence
of model uncertainty and other disturbances. Initially, robustness
has been addressed indirectly by first designing a FD filter and then
based upon the assumed uncertainty level applying a threshold filter
to the residual (the output signal of the FD filter).6,7 In particular,
Emami-Naeini et al.6 attempted to estimate the smallest size of the
failure, which is detectable in spite of sensor noise and model uncer-
tainty. In a later work, model uncertainty was explicitly taken into
account, and several robust FD filters were proposed.3,8−10 Prelimi-
nary applications of these techniques have also been reported in the
literature, for example, see Marcos et al.11

A FD scheme usually consists of two stages: construction of a
filter for generating residuals and a decision stage for analyzing the
residuals and deciding if a fault has actually occurred. Relatively
little has been done in combining robust FD filters with the synthesis
of a robust threshold strategy. For example, in Stoustrup et al.12

an optimal threshold function was investigated, where optimality
was understood in terms of false alarm and missed detection rates.
This approach provides a practical solution when the basic tradeoff
is between fault detection and measurement noise, but becomes less
convenient when measurement noise is small as compared to model
uncertainty. The main tradeoff when working on real systems, as
was the case for the SEC program, is between fault detection and
model uncertainty. Thus, robust synthesis techniques are required
for both the FD filter design and the threshold strategy.

When model uncertainty is large, the residuals generated by any
FD filter are significant, and the design of a threshold function ca-
pable of handling model uncertainty becomes critical. This paper
presents a solution to this problem using energy-like arguments.
The proposed approach has similarities to the work in Shim and
Sznaier,13 where a model invalidation argument was used to de-
cide whether a fault has occurred or not. The main disadvantage
of the model invalidation approach was that it cannot be imple-
mented online because it involves the solution of an optimization
problem of monotonically increasing size. By exploiting the struc-
ture of the SEC problem, an alternative criterion is formulated for
the FD threshold filter, which dramatically reduces the computation
cost and enables real-time implementation.

III. HH∞∞ Fault-Detection Filter
The basic setup for this FD problem is the single-input, single-

output (SISO) system shown in Fig. 3. One familiar with robust
control theory will immediately recognize it as a typical “uncertain”
system. The block Gm represents the nominal model of the plant, and
the W blocks and the � blocks are used to represent the uncertain
aspects of the system and are known as the weighting functions and
perturbation matrices, respectively. The diagram is set up such that
the response of the true plant (i.e., DEMOSIM or the T-33/UCAV)
will be bounded by the set of ŷ responses for all variations in the �
blocks. Lastly, F is the filter to be designed. The primary difference
in this use of H∞ optimization is that problem proposed is open
loop, that is, the transfer function to be designed does not lie in a
feedback path, whereas in a standardH∞ control problem the design
block always lies in a feedback path. Even though our formulation
is not a typical H∞ optimization problem, it is well suited for it

Fig. 3 Robust plant model for the HH∞∞ design of the FD filter F. The
fault disturbance is represented by the Δf and Wf blocks, the model
uncertainty by the Δm and Wm blocks, and the noise disturbance by the
Wn block.

because the performance objectives and uncertainty descriptions fit
well within the H∞ framework.

As shown in uncertainty diagram of Fig. 3, there are two � blocks,
also known as uncertainty descriptions. These uncertainty blocks are
unknown and are in general linear-time-invariant transfer functions.
They are used to account for unmodeled dynamics and can also be
used represent modeling errors, such as static nonlinearities. Addi-
tionally, it is usually assumed that each � is norm bounded by 1,
that is, ‖�‖∞ < 1. With this assumption, the transfer functions W f

and Wm must be modeled appropriately to represent the magnitude
and frequency content of the signals.

A. HH∞∞ Problem Formulation
Block F of Fig. 3 represents the FD filter to be designed, and in

this section we outline the H∞ formulation used to solve this prob-
lem. The first uncertainty block � f of Fig. 3 is associated with the
perturbations of the fault model. The second uncertainty block �m

represents the uncertainty involved in describing a physical system
via a mathematical model, that is, modeling errors. Block Wn mod-
els exogenous disturbances in the system, for example, noise. The
weighting functions W f and Wm allow the introduction of a priori
knowledge and frequency conttent about the nature of the fault and
plant uncertainty. As mentioned in the Introduction, the objective
of the FD algorithm is to detect a fault during a closed-loop opera-
tion, and these two uncertainty blocks are an input-output effort at
modeling fault dynamics and plant uncertainty. Gm is a linear-time-
invariant model of DEMOSIM (see Sec. V.A for details about Gm),
and the mismatch between Gm and DEMOSIM is accounted for by
the Wm�m term. The fault model is represented by the W f � f term,
and the fault dynamics were designed to represent an aileron actua-
tor fault (see Sec. V.B for details). The setup in Fig. 3 highlights that
if there is no frequency separation between the fault W f � f and the
model uncertainty Wm�m , one cannot distinguish their individual
effects using input-output signals. Therefore, the proposed approach
requires that the fault and modeling errors lie in different frequency
bands.

Following the H∞ norm-based fault-detection approach,11 the
diagram in Fig. 3 is redrawn as shown in Fig. 4. In this figure, the
uncertain blocks � f and �m have been removed, and the signals
f and d have been isolated. Because the fault must be detected in
the presence of any input signal u, the filter design setup must be
independent of u. This implies that u must be eliminated from the
block diagram of Fig. 3. Because u and Gm are known, their product
y = Gmu can be subtracted from the robust plant response ŷ. After
simplifying the diagram, u is eliminated, and the new input to the
filter F becomes ỹ := ŷ − y.

A standard H∞ optimization problem is formulated based on
Fig. 4. This formulation assumes that the signals f and d are of
size 1, so that the early assumption—that � f and �m are also
norm bounded by 1—remains true. The objective of the H∞ fault-
detection design is to synthesize a filter F such that the transfer ma-
trix Trw between the extended input w := [ f d n]T and the residual
error r̃ is small in an H∞ sense. In particular, this would imply that
r the residual of the FD filter tracks the fault f̀ = W f f . Notice that
this particular uncertainty formulation also covers disturbances at
the plant input. In this form, standard H∞ design tools can be used
to design the filter. For alternative approaches toH∞ fault detection,
see Chen and Patton3 (Chap. IX).

Fig. 4 Setup for the HH∞∞ fault-detection filter design. If the transfer
function from f to r̃ is “small,” then the disturbances d and n are re-
jected, and the residual r tracks the fault signal f̀ .
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B. HH∞∞ Design Tradeoffs
To better understand the tradeoff involved in theH∞ optimization

problem, a closer look at the effect of the system inputs on the
residual r is needed. These relations can be obtained from the system
interconnection of Fig. 4. From the diagram, the residual is related
to the inputs by

r = FGm W f f + FGm Wmd + FWnn (1)

Equation (1) shows the tradeoff involved in the proposed fault-
detection problem. In order that the residual r tracks the fault W f f ,
the filter F should invert the plant Gm in the bandwidth of the
fault (as determined by W f ). At the same time, the filter F should
minimize the effect of the noise Wnn and the plant-uncertainty/input-
disturbance Gm Wmd. If there is adequate frequency separation be-
tween these two disturbances, then a good solution for F would be
to approximate G−1

m in the main frequency band of W f and roll off
at higher frequencies to prevent the disturbances from affecting the
residual.

Notice that if Wm or Wn significantly overlap the main frequency
band of W f , then no FD filter will be able to isolate a fault adequately.
This is a major concern in the design of an FD filter for an uncertain,
closed-loop system. However, in many cases of practical importance
the assumption of adequate frequency separation will hold, and a
H∞ FD filter produces the best compromise in terms of the H∞
norm. This observation motivates the topic of the next section: the
design of the FD decision criterion, that is, the threshold function.

IV. Is There a Fault?
A. Input-Dependent Threshold Function

In the absence of good frequency separation, plant uncertainty
will result in a nonnegligible residual even if no fault is present. The
use of a simple thresholding strategy will give rise to many of false
alarms if the threshold is set too low, or increased missed detections
if the threshold is set too high. This section describes a solution to
this problem; an input-dependent threshold function is developed
that exploits the additional information assumed about the system.
Referring back to Fig. 3, r can be written as

r = F{[Gm(I + �m Wm)(I + � f W f ) − Gm]u + Wnn} (2)

Following the model invalidation paradigm (e.g., see Smith et al.14),
a fault will not be declared if there exists a stable �m and n such
that ‖�m‖∞ ≤ 1, ‖n‖2 ≤ 1, and

r = F(Gm�m Wmu + Wnn) (3)

That is, there exists a linear-time-invariant uncertainty and a noise
signal consistent with the problem that can explain the observed
data.

In the context of fault detection, Smith et al.14 shows that given
[uT (τ ) r T (τ )]T for τ = 0, . . . , t , the problem of verifying the exis-
tence of a norm-bounded uncertainty �m subject to Eq. (3) can be
transformed into an optimization problem with a linear matrix in-
equality constraint. This fact has interesting consequences for offline
fault detection, but is not suitable for online fault detection because
it involves the solution of a monotonously increasing optimization
problem. The objective of this section is to present an alternative,
although weaker, criterion suitable for real-time applications.

Consider the projection operator:

(
T t2

t1 u
)
(τ ) =

{
u(τ ) t1 ≤ τ < t2

0 elsewhere (4)

with the simplifying notation T t = T t
0 . Equation (3) can be replaced

by the stronger condition

‖T tr‖2
2 ≤ ‖T t FGm�m Wmu‖2

2 + ‖T t FWnn‖2
2 (5)

for each time instant t . Given a causal operator G, one has
‖T t Gu‖2 ≤ ‖GT t u‖2, and so Eq. (5) implies that

‖T tr‖2
2 ≤ ‖FGm�m Wm T t u‖2

2 + ‖FWn T t n‖2
2 (6)

Given the assumptions ‖�m‖∞ ≤ 1, ‖n‖2 ≤ 1,

‖T tr‖2
2 ≤ ‖FGm Wm‖2

∞‖T t u‖2
2 + ‖FWn‖2

∞ (7)

Because the preceding transfer matrices are constant for a given
design, condition (7) can be rewritten as

‖T tr‖2
2 ≤ α2‖T t u‖2

2 + β2 (8)

where

α := ‖FGm Wm‖∞ (9)

β := ‖FWn‖∞ (10)

Condition (8) can be used for fault detection in real-time applica-
tions. Indeed, one can compute the threshold signal

g(t) = ‖T tr‖2
2 − α2‖T t u‖2

2 − β2 (11)

for each time t and declare a fault if g(t) > 0 at some time instant t .
Notice that if Eq. (5) holds for each time t , then Eq. (3) will

also hold. The opposite is not necessarily the case for linear-time-
invariant uncertainties �m , and in general the former condition is
much more restrictive. Also, the use of the triangular inequality and
the norm-bounding properties make condition (8) a sufficient, but
far from necessary, condition for Eq. (3). Therefore, condition (8)
must be relaxed to make it useful in practice.

B. Relaxing the Threshold Condition
Condition (8) is relaxed by introducing two design parameters. In

addition to bridging the gap between Eqs. (3) and (6), there are other
reasons that motivate the introduction of the design parameters. One
reason is that the weighting functions Wm and Wn were modified
in the H∞ design phase to achieve desirable behavior in the FD
filter, such as a specific roll-off rate. These modifications might have
resulted in slightly unrealistic disturbance models. This is especially
true for the noise signal n, which is often stochastic in nature and
can only be approximately modeled in the H∞ framework. Another
reason is that the FD filter and the threshold function are ill suited—
because H∞ is part of a worst-case criteria—for the critical FD
design task of trading off false alarm and missed detection rates.

Two design parameters are introduced in condition (8) in an at-
tempt to compensate for these difficulties. First, the running norm

‖T t u‖2
2 =

t − 1∑
τ = 0

‖u(τ )‖2 (12)

is modified by introducing κ a forgetting factor, with κ < 1

St u(t)2 .=
t − 1∑
τ = 0

‖κ t−1−τ u(τ )‖2 (13)

This exponential decay on the influence of “old” data can be used
for both norms in Eq. (11). The usage of the forgetting factor has
two main consequences:

1) The threshold strategy in Eq. (11) tends to become insensitive
to faults if Wm is relatively large as compared to the actual model
mismatch observed in practice. This is especially true when the
function is computed over long time intervals. The resulting large
negative threshold values of g can give rise to missed detection. The
forgetting factor will combat this by allowing g to return to normal
levels.

2) At some points during the operation of the system, one might
want to allow for relatively large model mismatch that is not cap-
tured by the uncertainty bound Wm . In these instances, Eq. (11) can
result in a false alarm because the mismatch excites the FD filter in
the same way as the fault. This difficulty can be overcome by tem-
porarily ignoring the value achieved by g while the large mismatch
is present and then allowing the exponential weight of the forgetting
factor to bring g back to less than zero.
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Second, the noise level β is replaced by a tuning parameter β̂
that can be used to reduce the false alarm rate. This parameter can
be tuned by analyzing [u(t) r(t)]T data records under benign con-
ditions, for example, operating points where model mismatch is
small.

V. Fault Detection for the SEC Program
A. Plant Model

As mentioned earlier, the fault-detection design for the SEC flight
test was based upon DEMOSIM, a black-box nonlinear simula-
tion of the T-33/UCAV aircraft. To summarize our knowledge of
DEMOSIM, one can provide input commands, modify simulation
parameters, and observe output data, but there is no access to the
internal signals, dynamics, or logic. In addition to standard model
uncertainty, one also needs to address the fact that DEMOSIM’s
autopilot implementation and internal discrete logic (saturation lev-
els, limiters, etc.) are unknown. To make things even more difficult
from a fault-detection perspective, the inputs to DEMOSIM are actu-
ally autopilot commands. Thus, only guidance-level (i.e., kinematic)
control of the vehicle is possible.

The components of the input and output vectors used for control
design are shown in Table 1. The fault-detection scheme described
in the preceding sections was applied to a subsystem of DEMOSIM.
Specifically, the lateral-directional dynamics were of interest, that
is, the heading rate to heading channel, or simply denoted as the
heading channel. This subsystem was selected because simulation
analysis of DEMOSIM showed that the heading channel was ef-
fectively decoupled from the other two reference commands (see
Table 1) if the commands are restricted to lie within certain toler-
able limits. This simplified the fault-detection problem to a SISO
system.

A linear model was identified from input/output data obtained
from the DEMOSIM’s heading channel. (For identification and sim-
ulation, numerically differentiated heading output of DEMOSIM
was used as the measurement. Correspondingly, the identified plant
model was actually a heading rate to heading rate transfer function.)
The model identified was based upon the response of DEMOSIM to
a 0.5-deg/s step command. A third-order autoregressive exogenous
model was identified using the MATLAB® System Identification
Toolbox.15 With a sampling rate of 10 Hz, the discrete-time transfer
function for this model was

Gm = 2.48 · 10−3z3

(z − 0.98)(z2 − 1.89z + 0.90)
(14)

This is the model used in all design and analysis to follow. The
frequency response of this model is shown in Fig. 5.

The linearized model of Eq. (14) was validated for use in control
and FD design by extensive simulations comparing it with the non-
linear DEMOSIM. The sampling frequency of 10 Hz was selected
as a tradeoff between fidelity, DEMOSIM constraints, and compu-
tational constraints. (Note that this model was also used to design a
RHC, which requires online optimization.) No degradation in per-
formance was observed when comparing the 10 Hz linear model
with others models computed at higher sampling rate.

B. Fault Model
DEMOSIM did not provide a way of internally simulating a fault.

This made it necessary to simulate a fault by corrupting either the
input or output channel of DEMOSIM in such a way that the result-
ing output resembled a faulty system. There are many ways in which
this can be done. The approach used in this paper involved insertion

Table 1 Input command and output
measurement vectors for the T-33/UCAV test bed

Command vector u Measurement vector y

Velocity, ft/s Velocity, ft/s
Heading rate, deg/s Heading, deg
Altitude rate, ft/s Flight-path angle, deg

a)

b)

Fig. 5 Frequency responses for the plant model Gm and the fault model
Wf . Note the frequency at which peak in magnitude occurs for Wf , as
frequency separation of this model from the other input disturbances
was critical during the FD design.

Fig. 6 Multiplicative fault in-
put. The basic setup use for
the implementation and identifi-
cation of the fault model.

of a multiplicative input fault, shown in Fig. 6. In this figure, u is the
actual or true command sent to DEMOSIM, and ù is a “corrupted”
command that will produce a “faulty” output. The no-fault scenario
corresponds to the case when the Fault On switch is open, that is,
ù = u.

Because only lateral motion is being considered in this FD prob-
lem, it is necessary to only look at faults that have strong coupling
to this channel. One such fault would be an aileron actuator fault,
and so W f was designed such that the overall system (i.e., with the
multiplicative fault input) would behave as if a true aileron actuator
fault had occurred. At this point, it is important to stress that be-
cause the FD algorithm was designed by corrupting the closed-loop
behavior of the lateral axis, it will in practice only detect a degraded
lateral axis control condition, which does not necessarily imply an
aileron actuator fault. Other conditions such as faults in a flap or
wing damage can also degrade the lateral axis control.

Physically, an aileron actuator fault can result in changed dynam-
ics of the actuator for example, a change in its damping or natural
frequency. These dynamical changes—faults—could be caused by
physical damage to the system, such as a loss of hydraulic pressure
or damage to the aileron control surface. It is based upon these dy-
namical changes that we designed the fault model as will be seen
next.

Identification of W f

Identification of the fault filter W f was performed using a Boeing
747 (B747) aircraft simulation. Unlike DEMOSIM, this simulation
allowed internal parameters of the actuators to be varied, so that
with it both nominal responses and faulty responses could be gen-
erated. The following paragraphs describe how the fault filter W f

was identified using these responses and how it was generalized and
scaled according to the dynamics of DEMOSIM’s heading channel.

Assuming a multiplicative input fault as in Fig. 6, the response ỳ
of the true faulty system was approximated by

ỳ = Gm(1 + W f )u (15)

From here, W f is to be identified such that the preceding equation
is a good model of the faulty system. The block diagram for this
equation is shown on the left side of Fig. 7. If we assume that all
signal levels remain within reasonable bounds, the nonlinear plant is
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Fig. 7 Equivalent fault identification diagrams. The left side shows the
initial setup, whereas the right side shows an equivalent representation
that allowed the identification of Wf .

well approximated by Gm , and the left side of Fig. 7 can be redrawn
with Gm on the input side. This equivalent representation is shown
on the right side of Fig. 7. From this figure, it is clear that ỳ = y + f̀ ,
where f̀ is the fault signal. The relationship can then be written as
f̀ = ỳ − y, and because both ỳ and y can be observed from the
simulation the frequency response of W f is calculated as

W f = FFT (ỳ − y)

FFT y
(16)

where FFT denotes the discrete-time fast Fourier transform.
In a true system, any given instance of a fault can manifest itself

with a slightly different frequency response for each occurrence.
Thus, we did not characterize W f with only one faulty response
ỳ. Instead, we used a family of ỳ responses to find W f . This was
accomplished by overbounding the collection of responses with a
single “hand-fit” weighting function Ŵ f . For Ŵ f to be an accurate
model of the true fault, it was important that a large domain of
faulty aileron dynamics was used in generating the family of ỳ
responses. The resulting Ŵ f upper bound was used as the final
weighting function. Future references to Ŵ f will be denoted simply
as W f .

Generation of Nominal and Faulty Responses
As mentioned earlier, the fault simulated in the B747 simulation

was an aileron actuator fault. In the simulation, the actuator is mod-
eled as a second-order system with a nominal natural frequency
ω0 = 16.4 rad/s and damping ratio ζ0 = 0.67. Using these parameter
values, the nominal response [i.e., y of Eq. (16)] was generated with
the simulation.

The family of the faulty responses was generated by running the
simulation with a variety of natural frequency ω and damping ratio ζ
combinations, where ω ∈ [3, 15] rad/s and ζ ∈ [0.7, 1.5]. These sets
of parameter values caused the actuator to exhibit a slower response,
which is reasonable for a faulty or degraded actuator. Equation (16)
was used to generate a frequency response for each of the faulty
cases. A bounding transfer function for this set was found and used
as the weighting function W f in the FD design. The final transfer
function identified was

W f = 2.6 · 10−3s(s + 10)(s + 5)(s + 0.3)

(s + 0.9)(s + 0.2)(s2 + 0.416s + 0.64)
(17)

The frequency response of W f is shown Fig. 5.
Because the dynamics of the B747 simulation were not the same

as the dynamics of DEMOSIM, it was necessary to shift the fre-
quency of W f so that its response lied within the bandwidth of
DEMOSIM’s linear model Gm . The gain was also adjusted and
was later used as a parameter to vary the intensity of the fault.
This parameter provided control directly related to the missed de-
tection rate of the filter. A higher gain for the function W f meant
more energy was now entering the system through the fault. This
led to slower response filter designs with higher missed detection
rates. [Note that it is not suggested that the procedure described in
Sec. V.B is an ideal method for generating the fault filter W f . On
the contrary, whenever possible the filter should be found by intro-
ducing actual faults in the system and observing their input-output
behavior, but because of the limitations of the system at hand (see
the discussion about DEMOSIM in Sec. I), a reasonable alternative
was necessary. In summary, our alternative approach consisted of
the following: 1) basing the fault model on a high-fidelity nonlinear
B747 simulation introduced with aileron faults; 2) computing a set
of faulty closed-loop responses; 3) bounding the faulty responses

Fig. 8 Frequency response of theHH∞∞ filter design and weighting func-
tions. These plots should be compared to the magnitude plots of Fig. 5,
noting the interaction of the responses in the frequency range around
0.2 rad/s.

by the function W f using standard robust control arguments; and
4) scaling the frequency of W f by comparing the bandwidth relation
between the T-33/DEMOSIM and B747 simulations. This approach
was not only physically motivated but also seemed reasonable, even
though it meant that no claims of fidelity nor safety in practice could
be made.]

C. Filter Design Results
The characteristics of the synthesized H∞ filter and its expected

performance are presented in this section. Figure 8 shows a magni-
tude Bode plot of the H∞ optimal FD filter F , corresponding to the
problem formulation in Sec. III. Also included in this figure are the
final weighting functions Wm and Wn used in the design.

From Fig. 8, it is clear that F is essentially a low-pass filter. This in
not surprising because the problem has been formulated as a distur-
bance rejection problem. Also, the roll off occurs at a frequency that
is expected, near the point an which the noise Wn begins to increase.
In the sections to follow, the performance of this filter is discussed
in multiple test environments and integration levels. First the FD
filter without the threshold function is integrated with DEMOSIM
and the OCP and tested by simulation. These results are generated
from a priori command signals and assist in demonstrating the fun-
damental performance of the stand-alone FD filter. Following that,
the FD filter with the threshold function is integrated with the other
UMN/UCB SEC technologies into the entire SEC capstone demon-
stration flight-test plan, and its performance is assessed in various
test situations: offline simulation, HIL simulation, and flight testing.

D. Offline FD Filter Performance
A simulation environment to test the fault-detection filter is shown

in Fig. 9. This setup was based on the H∞ design interconnection
of Fig. 4 and the fault model setup of Fig. 6.

In this simulation, two 0.5-deg/s magnitude heading rate step
commands are issued to DEMOSIM: a positive step at t = 0 s fol-
lowed by a negative step at t = 100 s. The fault is inserted at t = 70 s.
The simulation results in Fig. 10 include the heading rate command
u, the faulty command ù, the model error ỹ, the residual r , and fault
signal f̀ , respectively. (In the simulation and flight-test results to
follow, the model error is calculated with the true plant output yχ̇

instead of the plant model estimate ŷ used in the design phase.)
Because the fault was inserted at t = 70 s, the response to the

first step command is a nominal response, and the response to the
second step is a faulty response. Note from Fig. 5 that W f rolls off
at low frequency. This means that the fault is only excited during a
transient phase of the input command u. This can be seen in Fig. 10b
by observing that ù remains constant even after that fault is turned
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Fig. 9 Fault detection offline simulation diagram. This is the simula-
tion setup that was implemented and used in the UMN laboratory to
test and analyze the FD algorithm when integrated with the nonlinear
plant DEMOSIM.

a)

b)

c)

d)

Fig. 10 Offline simulation results of the FD algorithm and DEMOSIM.
Plot a) shows the heading rate reference command u, plot b) shows
the “corrupted” command ù that is used to generate the faulty plant
response, plot c) shows the observed model error, and plot d) compares
the residual r and the fault f̀ .

on. It is only after the second step (i.e., t > 100 s) that ù becomes
different from u.

As expected, the residual shown in Fig. 10d indicates that the
FD filter is excited more highly during the faulty response than the
nominal one. The output f̀ of W f is shown in Fig. 9d to indicate
the tracking performance between these two signals. Recall that in
the H∞ optimization one of the performance objectives was that r
was to track the fault f̀ . Although the figure clearly shows that that
the tracking error is not always small, the residual does eventually
converges towards the desired response f̀ .

One reason why the residual tracking error is not always small is
model mismatch. To see this better, an additional run of the simu-
lation was made. It was identical to that just described, except that
the fault was not turned on. The main results of this run are shown
in Fig. 11. The nominal (i.e., nonfaulty) heading rate responses yχ̇

and y from this run are shown in Fig. 11a. Shown in Fig. 11b is
the model error ỹ = yχ̇ − y. Because the fault was not turned on,
ỹ is a direct measure of the model mismatch over the entire run.
Because the model mismatch is a component of the signal sent to
the FD filter, there must be frequency separation between it and the
fault in order its effect is filtered out. Such is not the case for this
problem, and this fact indicates a tradeoff in the FD design between
the tracking performance (i.e., of the residual r following f̀ ) and
the model mismatch rejection performance (which is related to the
ability of the filter to detect a fault). On one extreme, heavily weight-
ing the filter’s tracking performance in the H∞ design results in a
filter that will track both the fault and the model mismatch. On the
other extreme, attempting to only reject model mismatch results in
an FD filter that is benign even to the fault. In both cases the fault
is indistinguishable from the model mismatch.

This tradeoff was addressed by considering the energy of the
residual. Shown in Fig. 12 is a 5-s running integral of the energy
of the residual r of Fig. 10d. Clearly based upon the integral, there

a)

b)

Fig. 11 Offline simulation heading rate responses and model mis-
match. Plot a) compares the heading rate responses yχ̇ and y to the
command u. Plot b) shows the model error between DEMOSIM and the
model Gm.

Fig. 12 Running integral of the residual’s energy with a 5-s window.
This plot gives insight into the residual’s behavior in the presence of a
fault. It shows clearly how the energy content of the signal is increased
during a fault.

is much more energy stored in the residual after the second step
compared to the first step. We denote the peak energy level after
the first step (and prior to the second step) as E1 and the peak
energy level after the second step as E2. Then we can define the
difference as �E = E2 − E1. Not surprisingly filter designs with
good tracking performance had large values for E1 and E2 but small
�E values, and filter design that exhibited good model mismatch
rejection also had small �E values but with small peak energy
levels. In trying to weigh the tradeoff, rather than looking directly at
the tracking or model mismatch rejection performance, the energy
difference �E was instead used as a criterion. Specifically, the filter
design with the largest value of �E was chosen as the final FD
filter.

VI. Software-Enabled Control
Capstone Demonstration

A. Software-Enabled Control Capstone Demonstration Overview
The SEC fixed-wing capstone demonstration involved a flight

test, which took place on 21 and 24 June 2004 at NASA DFRC
in Edwards, California, of a Boeing T-33/UCAV aircraft that was
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Fig. 13 UMN/UCB SEC Capstone Demonstration Experiment plan.
This figure shows the RHC engagement area, the planned reference
trajectory and maneuvers, no-fly-zones (NFZs), the pop-up obstacle,
the target location, and finally the fault-detection segment.

integrated with the UMN/UCB SEC technologies. These technolo-
gies included a RHC algorithm, a RHC application program in-
terface (RHC API), and a combined FD algorithm and threshold
function. Prior to being flight tested, the flight plan associated with
the SEC UMN/UCB capstone demonstration was also simulated
offline and in HIL. The results of these tests are presented in the
following sections.

Outlined next are the events of the SEC UMN/UCB flight
demonstration experiment plan. Figure 13 is a diagram of the
flight demonstration test range and the UMN/UCB flight plan. The
flight experiment is divided into four main segments: initialization;
phase I—pop-up threat avoidance; phase II—target engagement;
and phase III—fault insertion and detection.

The first segment is the initialization. It is a set of conditional pro-
cedures that the pilot must undertake to ensure a safe transition of
control from the autopilot to the RHC algorithm. The objective is to
ensure the T-33/UCAV is flying within tolerable limits and is at the
proper altitude and speed at the time the RHC is engaged. Because
the trajectory is defined relative to the point of RHC engagement,
care had to be taken to engage the RHC in a timely manner; other-
wise, the trajectory might fall outside the test range boundary. To
ensure that this would not happen, an RHC engagement region near
the ingress point for the T-33/UCAV was determined. This area is
denoted as the engagement area in Fig. 13. The initialization deter-
mines if the flight test will proceed, and a successful initialization
occurs if the aircraft at the time of RHC engagement is within the
engagement area and is flying a westerly track.

After initialization, the flight test starts with phase I. This phase
involves trajectory tracking and obstacle avoidance while proceed-
ing towards a predefined target. In this phase the reference trajectory
passes around static no-fly-zone obstacles (NFZs, see Fig. 13) and
towards the vicinity of a potential pop-up obstacle, which might or
might not appear depending upon the decision of the flight exper-
iment manager. In the case when the pop-up is inserted, the flight
path will be replanned to avoid the obstacle, and the T-33/UCAV
will continue towards the target.

Phase II begins after the aircraft has passed the pop-up obstacle.
This phase includes positioning the T-33/UCAV for target engage-
ment. The T-33/UCAV also maneuvers around additional NFZs and
continues towards the target for engagement. Target engagement oc-
curs when the T-33/UCAV flies over the target. This event signifies
the end of phase II.

Lastly, phase III is the flight segment of most interest for fault
detection. In this segment of the flight plan, the aileron actuator fault
is inserted, and the combined FD filter and the threshold function of
Sec. IV is used to detect the fault. Within 30 s of target engagement,
the fault is turned on, following which is a series of S turns designed
to excite the fault model. During target engagement, the aircraft
should be in straight and level flight, and because the fault model
is not responsive except during a transient the fault should not be
detected until the onset of the S turns.

Table 2 FD threshold function design parameters

Design parameter Description Value

κ Forgetting factor 0.95

β̂ System noise level 1.9 × 10−3

K p Model uncertainty tuning gain 0.5

Fig. 14 Setup for the combined FD algorithm and threshold function.
This is the full FD algorithm that was used in all SEC capstone demon-
stration experiments. This setup includes the full implementation of the
input-dependent threshold function and its three tuning parameters: κ,
β̂, and Kp.

Testing the performance of the FD algorithm required a trajectory
that would result in heading rate commands within the range of valid-
ity for the FD algorithm, u ≤ |0.5| deg/s. (This range was determined
from standalone testing of the FD algorithm and DEMOSIM. This
limitation was, in effect, a direct result of the fact that the internal dy-
namics of DEMOSIM were unavailable to the SEC researchers. This
caused an inability to identify a high-fidelity model of DEMOSIM,
which resulted in significant model mismatch.) Based upon the ex-
pected velocity, a way-point trajectory was designed such that the
heading rate would fall within this range. In addition, the S-turn
segment of the FD trajectory was designed so that the heading rate
remained ≤ |0.2| deg/s. This limit ensured that the model mismatch
would not dominate the filter residual. The onset of the S turns is
shown in Fig. 13. For further details on the complete UMN/UCB
flight demonstration experiment, see Keviczky et al.16

B. Simulation Environment of the UMN/UCB
Capstone Demonstration

Figure 14 shows the combined FD filter and threshold function
setup (i.e., the full FD algorithm) for testing of the SEC UMN/UCB
capstone demonstration in offline simulation, HIL simulation, and
flight. The only notable differences for each test situation is the
source of the signal yχ . The source of yχ is DEMOSIM for the offline
simulations, a high-fidelity T-33/UCAV model (a proprietary model
used by the Boeing Company) for the HIL simulations, and the
T-33/UCAV test bed for the flight tests. Additionally, in the offline
simulations the RHC and the FD algorithms have been implemented
in a MATLAB/Simulink environment that interfaces with the OCP
and DEMOSIM, instead of being directly integrated into the OCP
C++ code.

The inputs to the full FD algorithm are yχ and u, the plant’s
heading output and heading rate RHC command, respectively. The
output of the algorithm is ř the threshold residual. The signal ř is
not to be confused with the FD filter residual r . (Both signals are
denoted in Fig. 14.) Table 2 contains a description of the design
parameters in the threshold function of Fig. 14 and their final design
values.

C. Capstone Demonstration Offline Simulation Results
Figures 15 and 16 show the offline simulation results of the FD

segment of the SEC UMN/UCB capstone demonstration flight plan
with DEMOSIM as the plant. The timescales are shifted relative to
time ton, which denotes the time the command is switched from u to
ù. This occurs just before the series of S turns designed to excite the
fault for detection. These turns begins at tturn = 20 s. The heading
rate commands and response of DEMOSIM for the simulation are
shown in Fig. 15.

The threshold function residual ř for this simulation is shown in
Fig. 16. Because the trajectory was designed such that DEMOSIM
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Fig. 15 Heading rate signals from the offline simulation of the SEC
capstone demonstration with DEMOSIM and the combined RHC and
full FD algorithms. Shows the response yχ̇ of DEMOSIM to the faulty
command ù. The nominal command u is also shown for comparison.

Fig. 16 Threshold residual ř from the offline simulation of the SEC
capstone demonstration. The relevant events—fault insertion, onset of S
turns, and fault detection—with their corresponding times are denoted.

would be in straight and level flight at ton, no activity is expected
from the FD algorithm until it is excited by the S turns, which
begin at tturn = 20 s. From Fig. 16 one can see that excitation of
the residual occurred sometime after 20 s. Then at t = 75.5 s the
residual ř became positive, and thus a fault was detected. Although
there is delay in the response of the residual (because of the running
integral of the threshold function), it nevertheless accomplished its
goal and detected the fault.

VII. Hardware-in-the-Loop Test Results
HIL testing was performed by the Boeing Company as part of

flight-test preparations for the final capstone demonstration. All of
the UMN/UCB algorithms to be tested were implemented in C++
code and integrated into the OCP. The real-time operating system
used for all HIL and flight tests was QNX.

The results shown in this section are based upon the experiment
plan as outlined in Sec. VI.A. The HIL environment involved the
same interface that would be in the T-33/UCAV cockpit during the
flight test. This interface gave the pilot ability to monitor the air-
craft’s tracking performance, insert the pop-up obstacle, engage the
target, and insert the fault. For the HIL testing a Boeing scientist,
acting as the pilot, monitored the aircraft’s performance and posi-
tion via this interface and at the appropriate time engaged the fault
simulator for fault insertion.

Fig. 17 Comparison of the threshold residual ř for the HIL1 simulation
and the offline UMN lab simulation. The HIL1 simulation did not have
a fault inserted.

Fig. 18 Comparison of the threshold residual ř for the HIL2 simulation
and the offline UMN lab simulation. In this case, the fault was inserted
during the HIL2 simulation.

The results of the HIL simulations are shown in Figs. 17 and 18.
These figures show the evolution of the threshold function resid-
ual ř in the time around fault insertion and detection. Each figure
corresponds to one of the two successful simulation runs. The first
HIL simulation was one in which the fault was not inserted, that is,
the fault on switch was not closed. This simulation is referred to as
HIL1, and the results are shown in Fig. 17. The second successful
HIL simulation performed is referred to as HIL2, and it only dif-
fered from HIL1 in that fault was inserted. The results of this run
are shown in Fig. 18. Also shown in these figures for comparison is
the threshold residual from the offline UMN laboratory simulation
(Fig. 16). The UMN laboratory results are denoted as UMN. The
two HIL scenarios provide insight into the filter’s model mismatch
rejection performance because the only excitation in HIL1 is caused
by model mismatch, whereas in HIL2 both model mismatch and the
fault excite the FD filter.

One important note about the results shown in Figs. 17 and 18 is
the similarity between the HIL and UMN runs. The coherency of the
results validate that the FD algorithm was integrated properly into
the embedded system and that it performed correctly. Also, because
the HIL environment was a high-fidelity, realistic simulation, it also
confirmed the validity of theH∞ FD filter design and the theoretical
foundations of the input-dependent threshold function. Note that
the filter performed as expected in both HIL runs: a fault was not
detected in HIL1 and was detected in HIL2. This fact confirms that
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the FD filter was tuned correctly and also that it did a proper job
in rejecting a certain level of model mismatch. This is encouraging
because it also validates the model uncertainty characteristic chosen
for synthesizing the FD filter.

VIII. Flight-Test Results
The final flight-test demonstration for the DARPA SEC fixed-

wing program occurred in June 2004 at NASA Dryden Flight Re-
search Center. The final demonstration for UMN/UCB team in-
volved two flight tests. During the flight tests, the velocity loop
was closed by a human pilot following a velocity command from
the RHC software. Because the pilot was a part of the actuation, a
model of the pilot was necessary during the RHC design. A highly
simplified model was used to account for the human behavior of the
pilot, and as a consequence the RHC achieved poor velocity tracking
during the flight test. The effects were large velocity transients that
led to degraded position keeping—observed as overshoot and oscil-
lation around the reference trajectory. These difficulties were further
compounded by high winds encountered during both flight-test runs.
These combined effects were detrimental to the FD algorithm’s per-
formance. The oscillations around the reference trajectory were, in
essence, viewed by the FD algorithm as model mismatch. Because
the FD algorithm does not completely reject all levels of mismatch,
the input-dependent threshold function integrated up a significant
amount of residual energy prior to fault insertion. This was more
energy than the threshold function’s “forgetting factor” was able to
eliminate. Because of this, at fault insertion the threshold residual
was already positive, and thus a fault was immediately declared.
This was a false alarm because it is expected (as seen in the offline
and HIL simulations) that the fault should instead be detected at
some time after the onset of the S turns.

Although the flight test did not result in a valid fault detection
at the proper time, the flight test was not completely unsuccessful.
Given the conditions encountered—poor velocity trajectory track-
ing, high winds, velocity oscillations—the FD algorithm performed
just as expected. It was designed knowing there were limitations in
its model mismatch rejection performance, caused by the intrinsic
lack of frequency separation with the fault. Additionally, the thresh-
old function was designed with a forgetting factor, which adds a time
delay in the threshold function’s response. Because of this delay and
the poor position keeping, the threshold residual was not allowed to
reach stability during the flight prior to fault insertion, as assumed
in the flight test-planning. In such a situation, we understand that
the FD algorithm can issue a false alarm. In addition, the behavior
of the threshold residual is an indicator that the aircraft was outside
the validity range of the linear model of the aircraft and thus also
outside the allowable flight regime for the FD algorithm.

Last, we point the reader back to the HIL simulations and the
results thereof, noting that the HIL simulations were in many ways
much more representative of a true UAV in comparison with the
T-33/UCAV test bed. This is especially true in regard to the velocity
control. The HIL environment contained fully automatic velocity
control loop, whereas the T-33/UCAV test bed’s velocity control
required a pilot in the loop. The former is clearly more representative
of a real UAV, and therefore the results of the HIL should be of utmost
significance when evaluating the overall success of the proposed FD
algorithm and threshold function performance.

IX. Conclusions
This work was accomplished by University of Minnesota (UMN)

and California-Berkeley (UCB) researchers as part of DARPA Soft-
ware Enabled Control (SEC) Fixed-Wing Capstone Demonstration
program. The fault-detection (FD) design for the SEC program was
accomplished by an application of well-knownH∞ design methods.
Also using robust theory, a novel approach to thresholding the FD
residual was also presented. This new threshold function is uncer-
tainty conscious and input dependent. This function was combined
with the H∞ FD filter and was successfully implemented in an of-
fline simulation, a hardware-in-the-loop simulation, and a flight test.
The effectiveness of this combined algorithm—also being coupled

with the other SEC UMN/UCB technologies and a full-nonlinear
aircraft model—was verified by a successful detection of a fault in
the offline simulation. The results were later validated by another
successful fault detection in the high-fidelity hardware-in-the-loop
simulation performed by the Boeing Company. Lastly, the full FD
algorithm was successfully implemented on the T-33/UCAV test
bed and performed in real time as expected.

In summary, the results of the combined FD algorithm and thresh-
old function presented in this paper show promising results by the
successful detection of an aileron actuator fault in numerous testing
environments. It is hoped that the application of H∞ FD and the
results and insights of the input-dependent threshold function will
provide a basis for further research and investigation into robust
fault detection.
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